AUTHOR
TITLE
INSTITUTION
PUB DATE
NOTE
PUB TYPE
ERS PRICE
DESCRIPTORS

Fetter, Mark

Computer Literacy in California schools. California State Dept. of Education, Sacramento. Feb 84
43 p .
Reports - Research/ Technical (143)
MF01/PC02 Pius postal
Attitude Measures ; *Computer Literacy; Educational Assessment; *educational Objectives; Elementary Secondary Education; Grade 6; Grade 12; *Parent. Background; ${ }^{\text {® Sex }}$ Differences; Skills; State Surveys; *Student Attitudes; resting Programs
IDENTIfIERS: *California

Abstract

An assessment was conducted in 1983 of the skills, Knowledge, attitudes, and experiences of Callforniásixth and twelfth grade students in the ar ea of computer technology. Cognitive test questions were written to conform to a set of objectives used in the Department of $\begin{gathered}\text { éfensé Dependents Schools (boDS) curriculum; attitude }\end{gathered}$ questions were obtained from the National Assessment of educational Progress; and background questions were designed to assess relevant prior knowledge of and experience with computers. The questionnaire was administered to approximately $23 ; 400$ twelfth grade and 293;700 sixth grade students. Boys reported having more experience with computers than girls did, and this experience was associated with higher test scores. Nearly ail groups studied showed a tow level of understanding of the basic concepts of computer technology. A majority of students did exhibit awareness of certain basic concepts and hold positive attitudes towards computers. Even so; substantial about computers. Students with parents having more education; or who worked professionally, had higher test scores than students with parents who had less education or who did unskilled work. A 10-item bibliography and a list of poDS student objectives related to computer literacy are provided. Supporting tables and graphs are appended: (Author/ESR)

-

PERMISSION TO REPRODUCE THIS material hás been granted by
Mark Fetler
to the educational resodrces information center (ERIC).":

Abs̄trāct

Findings from an assessment of the skills, knowledge, attitudes and experiences of California sixth and twelfth grade, students in the area of computer technology are reported. Boys reported having more experience with computers; and this experience was associated with higher test scores. than girls. Nearly all groups studied showed a low İ vel of understanding of the basic concepts of computer technology: A majority of students did exhibit awareness of certain basic concepts of computer téehnology, and day \bar{d} ho l \bar{d} positive attitudes towards computers. Even sop substantial percentages of students subscribed to various common misconceptions about computers. Students with parents having more education; or who worked professionally, had higher test scores than students with parents who had less education or who did unsteviled work.

ㄷii $=3$

Computer Literacy in California Schoois

The computer can be a means of educating students and an object of study in itself.iftistoricaliy, in the public schools; there has been more interest in the former appicationthan in the iater. These two appíications are not mutuaily exciusive. ysing the computer as an ins \bar{t} machine and how to operate $\overline{f^{t}}$. it, is aiso true that the study of computers and protraming can be a natural and stimulating way to 'learn problem solving skills and various mathematical and sicientific concepts.

There is strong evidefce for the growth of a serious intereest in computer studies in california and nationfide. The California State Board of Education in $\overline{1983}$ made computer. studies a part of its model graduation requirements, a measure which is being considered and duplicated in other states. The college Böard in lige inaugurated an Advanced placement test for high school students in the area of computer sciencé: The National center for educationai statistićc in 1983 in̄itiated a nationwīe study of computer interacy.

[^0]- The growing popuilarity of the computer in school curricuia and the growing role of computers in the workplace; raise the concern that all students have true opportunity to benefit from instruction in computer technology: To the extent that enrọiment trends in the area of
 mathematices; gíris arè not benefíting from suckeinstruction as much as boys:. The primary goài of thís study was to examine the knowledge; átítudés and experiences óf Caífornia sixth and twelfth grade boys and gíris in, the area of computer technology. The study was designed to encompass the diverse educational objectives of many different district and school programs. The result was a baseline measurement. It should not be interpreted as an evaluation of a particular curriculum or educational policy.

Educators hāve witnessed in recent years a lively debate about what students should learn about computers" Statements of educational. objectives have been published by the Comittee on Computer education (1972), the Nationai Councí of supervísors of Mathematics (1978), Johnson; Anderson, Hanson; and kiassen (1980); Rogers'(1982); and the Department of Défense Dependents schools (1982); among óthers. Díscussíon of various key issues can be foundrin Seidel, Anderson and Hunter (1982).

The National Assessment of Educational progresss.included several questions on computers been reported by Carpenter; Corbitt, Kepner Lindquist and Reys (1980). They concluded that \bar{a} large majority of the 13 and seventeen year old students tésted had littīe or no experience in actual applications óf
computers. For example, only 8 percent of is year oids añd in percent of seventeen year olds said they knew how to program a computer: By contrast, there was a somewhat higher level of awareness of the routine uses of computers. Understanding of more sophisticated uses of computers in complex decision making and mathematical modeling of problems. wās morē limitēd.
 assessment repeated some of the computer quéstions assed ịn 1978 . Between 1978 and 1982 the number of students with accēss to compútér for learning mathematics almost doubled: Nearly one-fourth of $\overline{1} \overline{3}$ year olds and one-half of seventeen year olds had access to a computer in. school in 1982.: Students at both ages were more positive about computers in ín 192 than in 1978. Even sor a substantíai number of students continued to hoid a variety of mísconceptions about computers.

The California Department of Education in 1981 surveyed sixth grāde school officials and students on computer use. Twenty-nine percent of thè élementāry, schools surveyed possēsesed a microcomputer or computer tērminal. of the schools with equipment roughly onēhalf used the equipment for computer litēacy instruction. Schools thāt reportē using computęrs for stưdent progranming or creative applications tended to have higher socioeconomic status than schools reporting drili and practice applications. Boys were more likely to report use of a Computer in schooi or at home than giris.

Method

Instiumentation

Twelfth grade survey: A comittee of speciainsts in computer technology was assembied from the pubix ch school system; universities and industry. Thís committee desígned a survey to assess a wide variety of instructionai objectives in the area of computer studies; as well as attitudes towards computer technology, and relevant experiences with computers. Cognitive test questions were written to conform to sē of objectives that had been developed and used with the Department of Defense Dependents Schools (DoDDS) curriculum. Thēse objectives are shown in Appendix̄ A. ${ }^{2}$ Tē̄t questions were reviewed for relévance and accuracy of content, sex and ethinc bias: All cognitive test questions wére multiple choice with four options:

Attitude questions were'obtained from a set that had been administered by the National Assessment of Educationai progress in itts 1978 mathematics assessment. Each of the attitude questions requested the student to indicate à āeement (S̄trongly disagree, Disagreé, undecided, Agree; Strongly Agree) with a particular statement.

Statements included here were:

- Computers dehumanize sociéty by treating everyone ās a number:
- The more computers āre used, the less privạcy a person will have:

2 Thé téms; "computer literacy" and "computer science;" as used in this study, should be understood in light of the described objectives. The number of questions relevant to each objectiveis written in parentheses after each statement. There were, in aif; 430 questions; including 239^{\prime} for the area of computer i iteracy and 191 for computer science: The Northwes̃t Reơional Educationai uaboratory ín Portiand, Oregon, shared questions that had been written for a dodos evauiation and assisted in the question writing process.

- Computers will probabíy create as many jobsias they eliminate:
- Computers slow down and compincate simple business operations:
- Someday most things wíli be run by computers.

- Computers can help make mathematics more interesting.

The committee designed the background questions to assess relevañ prior knowledge of computers and experiences with them: These questions were:

- Indicate which of the following languages you have actuaily used to (wite and run computer programs.: (BASIC, PASCAL, HOGO; PILOT; FORTRAN; COBOL; FORTH, ASSEMBLY LANGUAGE, Other, Nöne) This question was presented only to twélfth graders.
- Indicate which of the following viaeo games you have at home. (Atarí; Odyssey; Intellivision; Colecovision; Other; None)
- indicate whích of the followíng types of microcomputers you have : used at school: (Atari 400 or 800; TRS-80; Appie;"pet-Commodore; (IBM, Texas Instruments; Osborne', OEher; None)
- Indicate the types of in-school microcomputer iearnintg experíencé you have had. (Write programs; Generally learn about computers; Drill and practicé, Simulations (math or science demonstrations); Nutoriāl, Instructional gamés, I have had littre experience with computers)
- Indicate where you have learned about computers. (At home, at : friends' homes; Special summer programs, Museum of science hall. At school during the day, At school during the evening, 'Computer
 computers)

Students were asked to report demographic information, inciuding sex, and level pf parent education. The five possible categories of parent education wèré:

- Not à high school graduate
- High school graduate
- Some college
- Four-year college graduate
- Advanced degree

That category corresponding to the highest educational level reached by a parent was to be sel ted.

The test: was desigsed in a matrix. format so that each student saw onty a smatl part of the entire pool of guestions. Eighty-six unique forms of the test were createc, each containing five gognitive test questions, one attitude question and two background questions. The attitude and background questions were assigned to the 86 test forms so that each would appear approximately an, equal number of timess. A different set of cognitive test questions; seiected to cover both computer literacy and computer science objectives, appeared on each form: These were arranged subjectively, in an order from easy to difficult, on each test. The test forms were spiralequ for destribution so that each one would be given about. the same number of times within each school.

Sixth grade survey. The questions selected for use with sixth grade students were a subset of those developed for twelfth graders. The

* selected questions were included on the California Assessment Program test, Survey of Basic Skills: Grade 6. $_{\text {i }}$ which is administered annually to
all public school sixth grade students in California. There dre 40 different forms of this test, and each student takes juft one form. in addition to the reading, written expression and mathematiçs questions included on each form, there has space for ong additional computer test question. This meant that 40 diffqrent computer test questions gould be given to sixth grade students.

Twentȳ-four cognitive tēst questions were selected. Theseq questions all corresponded to DodDS objectives, show in Appendix A, appropriate

- for elementary grades and all rē̄ated to computer literacy. "Thé, types, and number of questions were:
- Objective 1.2.i Use an appyopriate vocabulary (3 questions)
- Objective 1.2.2 Distinguish interactive and batch processing (3)
- óbjective $1-2.03$ fdentify major computer system components (4)
- Objective 1-2.4 Recognize appropriate tasks for a computer (i)
- objective i:2:5 Déscríne major nistorical deveiopments (2)
- Objective i.3.4 Devèop procedures to perform usefui tasks (2)
- Objective 1.3.5 Write simple programs (4)
- Objective 1.4.1 Know specific uses of computers (2)
- Objective 1.4.2 know computer occupations and careers (3).

In addition to the four regular response options originally included in the quēstions, sixth gradeŕs were permitted an "I don't know the answer" response.

Instead of information on pärent education, which was collected from twelfth graders; the sixth grade teachers provided information on parent occupation of students. The possible categories of parent occupation were:-
próessionai

- Semi-p̄rofessionà
- Skilied
- Unskizied

The instruction to the teacher was to mark the category which corresponded most closely to the occupation of the family's primary breadwinner.

Sample

Twelfth grade sample. Schools included in this study were sampled randomly using statewide test data' collected the previous year, high schools were ranked and classified into five equal categories on the. basis of number tested (a proxy for school size). Within each size category schools were ranked and classified into five equal groups gn the basis of an average index of parent education (a proxy for social class): This resulted in a five by five cross-ciassification of schools with equal numbers in each of the twenty-five cells. Schools were selected randomiy with a probability of $p=.125$ from each cell. From the originál population of 784 schools 98 were selected, containing an éstimated 23;395 students. The sample did ${ }^{3}$ not differ significantly
${ }^{4}$ from the population in terms of achievement or parent education. The sample average number. tested per school, $N=2 \overline{2} 9$, was smalier than the population average of $\mathrm{N}=2 \overline{8} 1$, indicating a sligh oversamping of small schools. Eighty-seven Schools participated in the study in Decemberf 1982, yielding a school response rate of 89 percent. 乌everal schoois

[^1]declined to participate on the basis that thetr students were not prepared for such an assessment. Survey questionnaires were received from 17,861 students, yielding an estimated student response rate of 88 percent from participating schools.

Given the matrix. format of the test, each of the 430 cogntifue test quéstions wàs tāken by about 200 students. Each of the thirteen attitude quētions appeared on six different test forms and was responded to by about 1,200 students. Background questions were placed on the tēt forms in pairs and about 4,800 students responded to each one:

Sixth grade sample: The Survey of Basic Skills: Grade Six wās administered to 293,717 students between April 25 and May 13 of 1983 under standardized conditions: Test forms were assigned tó students by. an effectively random procegine, with approximately equal numbers of each tést form given iñ each schoól. Às à resuit each computer tést question was given to an average of 7,343 students. . Rates of non-response ranged from four to six percent.
.
Analyses were grouped under three headings: performance, attitudes; and experience. Analysēs of performance refer to cognitivetest: questions, analyses of àtitudē refer to thérating scale questions, and analyses of experience refer to the background questions.

Performance

Responses to individuel cognitive test quētions were clās̄ified according to DoDDS student objective and aggregated. Average twelfth grade percent correct scores for bofy and girls, broken down by the
different categories of parent eáuction are contained in figures 1 and 2. A simíar anaiysís of sixth grade percent correct scores is shown in Figure 3: sixth and tweifth grade performance on those questions which were presented to students at both grade levels is summarized in Table i. Totà pērcent côrect scores are shown; along with a breakdown by Sex:

Attitudes
Student attitudes toward computer technology are sumarized in Tablē 2. Responses to the statements were coded (strongly disagrēē $\overline{\text { sed }}$ dissagree $=2$; undecided=3; agrēe $\bar{e}=4$; and strongly agree $\bar{e}=5$) and average values were computed for thē totā sample; as well as for boys and giris şeparatēly. Āērage valuēs greater than three indicate a tendency for agrement with the statement; and values less than three indicate disagreement:

Experience

Responses to the background questions, which provided information on student experíencés; àre summarized in tables 3; 4 and 5. The percent T of students responding to each option is shown along with a breakdown by sex. Twelfth grade percent correct on computer science and computē literacy test questions could be calculated for the subgroup of students L. selecting each option and this is displayed, as well.: perceats may not sum to 100 because of the possibility of multiple responses to these qư̄ड̄tioñ.

Results

Performance

Average twelfth grade performance is displayed graphically in Fig̣ures 1 and 2.:These figures reflect the responses of the 17,861 twelfth graders sampled. Average test scōres rañged fiom eighteen percent correct on questions about transiation óf software among computer ianguagés to a high of 68 percent correct on questions about appropriate tasks for computers. Boys scored consistently higher than giris for ail categoriés of pārent education iñ'both computer íteracy and computer scíence. . These resuits may refiect éther a tendency for boys to take more advantage of opportunities; or a tendency for parents or teachers to encourage boys more than girls, or come combination of both. Higher levels of parent education were associated with higher test scores. The
 students from more educated backgrounds than for studentṣ from lēs̄s educated backgrounds. This hints that sex-related differences in achievement are not diminished by increases in parent education and the social advantages which very likely accompany thesé increases.
insert figures 1 and 2 about here.

Average sixth grade computer iiteracy test scores for the 293,717 boys and girls surveyed, broken down by categories of parent occupation; are shown in Figure 3. Scores were low, ranging from about i6 percent correct to about 33 percent correct. Boys scored consistently higher than girls and students from less skilled parent occupation backgrounds
scored lower than those from more skilled or professional backgrounds: The difference between boys and girls was slightly larger for students from professional backgrounds.

Insert Figure 3 about here:

Twelfth and sixth grade summary performance on a common set of questions is displayed in Table 1 . The average percent correct sorest. in this table are derived from the subset of questions given both to sixth and twelfth grade students: Each objective in this table represents from one to four questions. Twelfth grade total scores ar en 7,343 to 29;372 responses; depending on. the number of questions represented. Although even very small différencēs are statistically significant; judgements about educational significance are not. so clear cut. f
\qquad

Insert Table 1 about here.

With a few exceptions boys scored higher than girls; confirming the
 cōrrēét points higher than girls; and twelfth grade boys were about 3.5 percent correct points higher. Exceptions to this trend in the twelfth grade were questions on vocabulary where both boys and girls scored a relatively high $\overline{8} 2$ percent correct and questions on interactive versus batch processing, where girls scored one point higher than boys. Types
of questions for which twelfth grade boys had the greatest advantage over girls were on system components, history and careers. Sixth grade girlis scored at the same level as boys in one subject only that is; systematic procedures. Questions on systematic procedures tended to address problem solving skills of a simple nature. Sixeb grade boys . scored much higher than girls on questions having to do with vocabulary, system components, history, and simple programs.

Areas of strength and weakness tended to be the same in both grades. There were relatively high scores on vocabulary questions. Much lower scores ${ }^{\circ}$ were obtained on questions about simple computer prograns: Sixth graders had their lowest scores on questions about interactive and batch processing:

The ability tọ write and use computer programs ís an importaṇt outcome of a course on programming: Twelfth grade students were asked to indicate the computer languages they had used to perform these tasks. Forty-three percent of twelfth graders indieated they had never written and used a computer program. The programming languages and percents of students indicating use were: BASIC, $3 \overline{7}$ percent; PASCAL, three percent; LOGO, three percent; PILOT, two percent; $\bar{F} O R T R A N, ~ f o u r ~ p e r c e n t ; ~ C O B O L, ~$ four percent; $\bar{F} O R T H$, one percent; $\bar{A} \bar{S} \bar{S} \overline{S M B L Y}, \bar{f} \bar{v}$ e percent; and other languages, five percent. Of the students responding to this question the highest average test scores were attained by the those who had used PASCAL: Of the students who indicated that they used BASIC 5 percent were boys:

Attitudes

 2. Responses to the statements were coded from i to 5 ; with disagreement receiving lower values and, agreement receiving higher values. Average values over three indicate agreement and values less than three indicate disagreement. Each sixth grade totatís based on about $\overline{7}, \overline{3} \overline{3}$ responses and each twelfth grade total iss based on about 1,200 responses:

Insert Table 2 about here. -

Concerns about privacy and being treated as a number are often ass s̄oćāted with computer technology. These are two ways in which computers are sometimes perceived to be dehumanizing. Twelfth grade students, boys and girls alike, tended to disagree slightly with the statements that "Computers treat everyone as a number;" and "The more computers $\bar{a} r \bar{e}$ used the $\overline{1} \bar{e} \bar{s} s$ privacy there is:" Sixth grade students; by contrast we re slightly more likely to agree with the notion that computer. treat people like numbers.

Student responses to statements about the role of computers in the workplace were positive and were more pronounced than their responses to statements about privacy and dehumanization. Twelfth grade students tended to agree that "Computers'create oas many jobs as they eliminate." There was relatively strong twelfth grade agreement with the statements that "A knowledge of computers will help a person to get a better job," and that "Someday most things will be run by computers." The pattern of
sixth grade response was simiłar.. sixth grade boys tended to beifeve more strongly than the gíris that computers computers wili hèp lo obtaining jobs and that computers will be running most things in the future.

There was relatively strong twelfth grade disagreement with the statement that "Computers slow down and compicate business operations." Boys were more in, disagreement than were girls'. Sixth grade students responded in a similar fashion, although not with quite the same degree of diśagreement. Sixth grade boys tended toldisagree more $\overline{\mathrm{s}}$ trongly than did the girls.

Attitudes; to àertain extent, are shaped by experiencē and expectations. It is possible that differences in thesexperiences and expectations of boys and girls are responsible for the somewhat more positive attitudes of boys towards the role of computers in the workplace: Iraditionaliy, in business; women have been exposed to computers through word processing and automated accounting. To the extent that these types of jobp greperceived as uninteresting by women, this could translate into less positive "attitudes.

Many people have associated computers with mathematics. Two aspects of this tendency are thàt \bar{a} person must be a màhematician to work with a computer (\bar{a} myth), and that computers can help to make mathematics more interesting. Both sixth and twelfth"grade stưdents, tended to disagree with the statement that "Two work with a computer a person must be'a mathematician." Despite the tendency to reject this myth it was true that more than one-fourth of the students in both grades either agreed or strongly agreed with the statement: Students in both grades
agreed relatively strongly, with the statement thāt "Computers cān hēp make mathematics more interesting." Boys in both grades were in. stronger agreement than girls.

Experience

Understānding the circumstancē of learnihg can help to interpret tést scorēs. Student responsēs to the question where they learned about computers are sumalyized in Tablé $\overline{3}$. For twelfth graders it was - possibie to provide average computer iiteracy and computer science percent correct scores for the group of students selecting each option. The design of the sixth grade study did not permit the caiculation of similar scores. The 'friends' option was not avaílabie to sixth grade students.
\qquad
Insert Table 3 about here.

Nearly one-half of twelfth graders reported knowing little about computers. Thirty-nine percent of twẹlfth grade boys and $5 \overline{1}$ percent of
\bigcirc girls séected this option. Approximately one-third of twelfth graders indicated learning about computers at school and one-fifth sád they learned about computers, from video games. Six percent more boys à the tweifth grade than giris reported learning about computers at home. ,
Approximat 1 y equal percentages of tweifth grade boys and giris said. they learned about computers in school: Relatively higher test scores were associated with learning at school, compared to learning from video games. The test scores of students who admitted knawing little about computers were only a few points lower than those who clamed to learn from video games.

Neāry one-hā̀ of sixth graders reported knowng.littie about computers, including 13 percent of the boys and 22 percent $\overline{\text { of }}$ the $\overline{\mathrm{g}} \mathrm{i} \bar{r} i \bar{s}$. Relatively lāge percentages of sixth graders reported learning about computers at school during the day (27 percent) and at home (23 . percent): Although a larger proportion of sixth grade girls reported learning about computers in school. boys were pore likely to report learning at home: This could indicate a tendency for parents to "encourage boys to learn about computers more than giris.

Forty-two percent of sixth graders indicated learning about computers from vídeo games. Many of these students may not have distinguished cleariy between computers and electronic games: To the extent that this
 computers: Less than one-fifth of sixth graders indicated knowing 1ittle about computers, and over one-fourth indicatedxiearning at school.

The types of student experiences with microcomputers in schōol are summarized in Table $\overline{4}$. Approximately 4,800 twelfth grade students and 7,343 sixth grade students responded to this question.. The highest average grade twelve test scores in this table were obtained by the 16 percent of students who reported that they wrote computer programs. Eíghteen percent of tweifth grade boys, compared to lu perceft of girls reported having written programs. Generally, the proportions of boys were greatē thān ōr equal to the propottions of giris in every category of actual use. Lower test scores were obtained by those students who reported playing computer games or who reported using the micracomputer for drili and practice. over onehalif of the twelfth grade students
reported having no in-school mícrocomputer iearning experience. This group included seyen percent moŕe gíris than boys:
insert Table about here.

Thír̄ty-two pérceñ of sixxth graders, including $2 \bar{q}$ percent of the boys and 35 percent of the giris; reported no in-school microcomputer learning. The most frequently selected sixth gíade use of microcomputers was computer games, including about one-third of the students. Just as in the twelftryrade, ithe proportions of bys were greater than or equal to the proportions of girls in every category of actuà use.

B
Insert Table 5 about here.

Student responses to whethér they had access to a microcomputer at
 a machinge, of course, says iittle about the use made of it. A míçocomputer might be available, but no instruction, on may take place. Average computer literacy and computer science tēst scores of twelfth grade students with access to a microcomputer were about 4.0 points higher than the scores of students without such access seven percent more twē fth grāe boys and eight percent more sixth grade boys than giris reported having in-school access to a microcomputer at both grades six and twelve about 60 percent of students reported having school aćcess: There. were no strong trends in tweifth grade test scores
in response to the question of accēss at home to a video game. Roughiy one-half of the twelfth graders andi two-thirds of the sixth graders reported having a video game at home. At both graaes boys were more iikely to juave accēs than girls.

Discussion

Perhaps the most, striking overali result was the superior penformance ${ }_{-} \bar{f}$ boys compared to gíss: Both sixth girade'and twelfth grade boys had generaily higher scores than girls The reason for this appeared to be thà boys had more experience with computers and progsamming than giris. Thís was true at school and àt home. Sex equity has been an issue in pubic education and īt īs inkely thạt reiated concerns will carry over into the area of computer studies if students with a background in computer technology benefit professionaily from their experience, there needs to be an assurance that specifíc subgroups of the population, are not being discouraged from acquiring that experience. This study does not explain why girls appear to have less experience in computer studies than boys; but it supports the hypothēsis that therè is̄ a difference. Overall test scores for both sixth and twelfth gráde students were low. To a certain extent these low scores can be ascribed to à lack of experience with computers for many students. Results from the analysis of attítude questions indicated a high level of student awareness of computers. This awareness was nọt backed up with a corresponding understanding of the basìc concepts ōf computer technology. Even more experienced students; those who reported programming experiences and school instruction in computer , technology, díd not score well these.

Z्nstractional objectives óf a course ō computer technology, and to effective ways of attaining those óojectives :

Accoraing to the 1982 Nationai Assessment of Educational Progress survey of mathematics achievement about ' 20 percent of 13 year olds and 22 percent ōf seventéen year oids reported knowing how to program. In
 reported that they had written and run computer programs. - Nationwide, about 23 percent of 13 year olds and 99 percent of seventeen year olds reported having accesśto a computer. in school for learning mathematics. In California, $5 \overline{6}$ percent of of sixth graders and $5 \overline{7}$ percent of twelfth graders reported having, accesss to a microcomputer at school: Al though greater percentages of California stodents reported access to a microcomputeŕ smālér percentages reported using them för programing thañ wās true nationwide:

It is unfortunate that social ciass, nistoricaliy, has been correlated with achíevement ō àit kinds. this relationship is clearly

 ít \bar{t} eracy scores between the highest and lowest parent education groups was about three times as large as the difference bètween boys and girls. Similar differences were found for the sixth grade test scores. It"was about one and \mathfrak{a} hàf times as. làrge for computer science scores:

It is \bar{s} a truism thāt people tend to act in accordance with their beliefs. Affective goals. are as much a part of the educational process ās are cognitive gọals. In addition to techndeal knowiedge and skitis. students should develop a positive regard for the beneftéá
capabilities of computers: Ideally, the more one knows about computer technoloqy, the more evident thesse attitudes should Be. Related to this is the ability to recognize popuiai myths about computers and their, implied vaiue judgments. C̄oncerns about privacy and being treated as a numberf althoúgh otida when understood in the context of the actual capabilities and.limits of technology, can be exaggerated in isolation手rom such knowledge.

Substantial proportions of drudents at both the sixth and the twelfth grạés did net feei that computers wéte dehumizing and they rejected popular mísconceptions about computers. Even with this relatively high level of awarenes and positive outiók it was true that large percentages of students at both grades'believed that a person must be a mathematician to work with a computer. This mistaken beitef, which appears to be widely held by the public, as wêly, is evidence that many students need more educating about the basic concepts and uses of computer technology.

- students at both gradés tended to see computers ás beneficial in the workplace, believed that computers would have an ever larger role in running things, and felt that a knowledge of computers would help in getting a better job: An issue raised by the results concerns student expectations about instruction in compurer technology and the reiationship of such tnstruction to preparation for jobs. This study. does not fuliz jiluminate these expectations; but the results would be consistent wifh the notion that students are expecting some type of computer education for jobs. Further íssues óf interest are. the extent to which student expectations miryor the expectations of teachers and parents.

Conciusions

An optimític conctusion of the current study is that nearly one half of the students surveyed at both grades had in-school experience with computers: Progranming experience, particulayy at school, was ássociated with hígher tweifth grade test scores. A majority of students at both grades exhibited awareness of coutine chàacteristics and uses of computers. . Test scores for programing objectives wete low, however, and mastery of general knowledge was not much better. Comparison of California data with thăt from the National Assessment of
 Pess programming experience thān are students nationwide.

Given enroliment trends in mathematics and science that have favored boys for years, it is not suprising to find a similar trend in the area of computer studies: The greater exposire to computers añ understanding of them by boys begins às eariy as the sixth grade; and is found both at school and at home. This could have negative consequences \mathcal{f} for women in the long run in the area of job competition. To the extent that computers factirtate the handing of information needed by professionais; not only in mathhematics and science, but in business, medicine, law, etc., there will be an increase in their use. Not to have some facility with computer technology, or to possess some useful understanding of computers, māy well be a disaduantage in competing for professionana level jobs.

Sex equity is not the only issue to be faced by schools in def̃intag à policy for the use of computers. A larger question refers to the rote of schools in educating students.ef it proper for pubile schools to
provide students with entry level skills for use in obtaining jobs? This would imply relatively close cooperation between schools and industry? Or should sctould schools only. provide students with an understanding or awareness of computers that would prepare them for further training in higher education? Answers to these questions will affect the expenditure of public school resources in three areas: acquisition of equipment; acquisition of software; and staff development state governments, professional associations, and governing bodies of schools need to be concerned with the making of these decisions; and there needs to be more public discussion of the benefits and costs associated with different choices. Presumably research into the availability and use made of computer hardware and software, and related staff development, is needed to help clarify these issues.

Rēfērencēs

California Department of Education. Computers in California eiementary schools. In Student Achievement in California Schoois: 1981-82 Annual Report. C̄āifornia Department of Education: sačamentō; $19 \overline{8} 2$.
 current status of computer literacy: NAEP resuits for secondary ștudents. Mathematics Teacher: 1980; 73; 6̄69-673.

Committee on Computer Education: Recommendations regarding computers in high school: Washington, D.C:; Conference Board of the Mathematical Sciences, 1972.

Department of Defense Dependents Schools. Educational computing: Support functions and student objectives. Alexandria; virghrta: Department of Defense office of Dependents Schoolsi 1982:
 =- What is it? Mathematics Teacher. 1980; 73; 91-96.

Moursund, D. Prẹcollege computer líteracy: A personal computing appraach:. Eugene; Oregon: university of oregon; Department of Computer and Information Sciemce; 1982.

National Āsessment of educatíonal progress. The third mathematics assessmept: resuits; trends and issues. Denver, Colorado: Education Commiśsion of the states; Aprii; $198 \overline{3}$.

National Council of Supervisors of Mathematićs: posítion paper on basíce s̄kills̄. Mathematics Teacher, February, 1978, 71, 147-152.

Rogers̄, J. An introduction to computing: Content for a high school coursē. : Eugene, Oregon: Úniversity of Oregon, Department of Computer and Information Science, 1982.

Seidel, $\bar{R} .$, Anderson, \bar{R}. and Huntér, $\overline{\mathrm{B}}$. Computer literacy. New York: Ācademic \bar{P} rēss, $1982 \overline{2}$.

Appendix A

STUDENT OBJECTIVES;
i. Demonstrate understanding of the capabilities; appiications; and implications of computer technology. (239)

1. Interact with a computer andor other electronic devices.
(42)
2. Demonstrate ability to operate a variety of devices which āre based on electronic logic. (8)
3. Demonstrate ability to use a computer in the interactive mode: (13)
4. Independentiy seiect a program from the computer resource í̄̄rary. (9)
5. Recognize user errors associated-with computer utilization. (12)
6. Explain the functions and uses of a computer system. (91)
7. Usē an appropriate vocabulary for commuicating about computers. (25)
8. Distinguish between interactive mode and batch mode computer processing: (9)
9. Identify a computer system's major components such as input; memory; processing ; and output. (20).
10. Recognize tasks for which computer utilization is appropriate. (í4)

29

$$
\because-\mathbf{2 6}=
$$

5. Describe, the major historical developments in computing. (23)
6. Utilize systematic processes in probiem solving
7. Choose a logicái sequence of steps needed to perform a task. (10)
8. Diagram the steps in solving a program: (7)
9. Select the appropriate tool and proceduré to solve à problem. (11)
10. Devélop systematic procedures to perform useful tasks in arēas such as social studiēs, business sicience and mathematics. (12)
11. Write simple programs to solve problems using a high level language such as PILOT; LOGO and BASIC. (18)
12. Appraise the impact of computer technology upon human ife.
13. identify specifíc uses of computers in fields such as medicine, iaw enforcement industryn fusiness; transportation; government; banking and space exploration. (12)
14. Compare computer-related educations and careers: (i3)
15. Identify social and other non-technical factors which might resstrict computer utilizātion. (10)
16. Recognizé the consequences of computer utilization. (11).
17. Differentiāte between responsible and irresponsible uses of computer technology. (2)
18. Demonstrate understandings of computer systgms inciuding software development, the design and operation of harduare, and the use of computer systems in soiving problems. (191)

1: Write structured and documented computer software. (95)

1. Write weil organized BASIC programs which include the use of color; sound and graphics statements. (41)
2. Write programs which demonstrate advanced programming techniques used to solve problems in business, scientific or entertainment applications. (19)
3. Write programs in an additional high level language such as PASCAL, COBOL or FORTRAN. (25)
4... Write programs in a low level language such as machine language or assembler: (10)
4. Defionstrate knowledge of the destgn and operation of computer hardware. (57):
5. Demonstrate unassisted operation of at least two different configurations of computers and their peripherais, (16)
2.: Use a special purpose computer or computer interfaced devices to monitor or control events by sensing temperaturé, light, sound, or other physical phenomena. (10)
6. Describe the computer's digital electronic círcuitry in terms of of binary arithmetic and iogical operators: (19)
7. Perform vendor authorized minor maintenance on the computer system: (12)
8. Use computer systems in problem solving e (ag)
9. Use data processing utikties including word processing and data balsa management in problem solving. (i le)
10. Translate software from one language to another or to another version of the same language (11) $\quad \therefore \quad \therefore \quad$ d
11. Analyze different solutions to the same problem. (16)

$$
4
$$

4

3
\cdots

Table 1
Twelfth and sixth Grade percent correct scores

Percent Correct

Twelfth Grade Sixth Grade

Objective - $\because \quad$ Total Boys Girls Total Boys Girl̄s

Table 3

Where learned about computers

Tē̄t Scorē̄ • Sūgroup Percents

青

的

$$
\cdots \quad-\cdots
$$

Tāblē

Types of in-school microcomputer learning

[^2]36

Table 5

z_{0} Figure $\%$. Twelfth grade computer iteracy percent correct for boys (B) and

4
.

ERIC

ERIC

[^0]: - This study was carried oyt under the auspices of the California Asses sment Program, whief is mandated to assess annually the level of achievement in California public schools and to investigate factors related to changes in that achievement. The obtained information is reported to the California Legislature, and to all tested schools and districts. The opinions expressed here are not necessarily those of - the California Department of Education.

[^1]: Thēse data $\cdot \bar{w} \bar{e} \bar{e}$ obtained from data tapes produced by the California Assessment Program. All twelfth graders attending Calffornía public schools are required to be tested:

[^2]: 五

